
Inverse diffraction, duality and optimal control

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1982 J. Phys. A: Math. Gen. 15 645

(http://iopscience.iop.org/0305-4470/15/2/031)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 15:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/15/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 15 (1982) 645-660. Printed in Great Britain 

Inverse diffraction, duality and optimal control 
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Abstract. The reduced wave equation can describe a non-dynamical system having infinite 
dimensional state space and a control at the boundary. We define a generalised control- 
lability property and show that it holds in a bounded domain. This property states that the 
linear subspace spanned by the trace of the system solution (i.e. the monochromatic scalar 
field) on a given boundary is dense in the corresponding Hilbert space as the boundary 
control is made to span an adequate Hilbert space. By duality, the ‘controllability’ property 
is shown to be equivalent to ‘observability’ of the adjoint system. The connection of this 
statement with the proof of uniqueness for inverse diffraction problems is discussed. The 
adjoint system solution is a Green function. The inverse problem is ill posed: it calls for a 
regularisation procedure related to minimising a real-valued convex functional which 
depends on complex variables. At this point Lions’s theory of optimal control is applied to 
state the existence and uniqueness of the minimising control. Lagrangian theory is used to 
derive the explicit form of the functional gradient. The latter allows us to design a 
minimisation algorithm where primal and adjoint systems must be solved sequentially. 

1. Introduction 

In the last few years interest in inverse problems has grown among the optics 
community (see e.g. Baltes 1978, 1980). In the following we study some properties of 
the Helmholtz equation from a system theoretical point of view and their application to 
inverse problems. We do not discuss here the physical implications of modelling a 
diffraction phenomenon by the Helmholtz equation, such as evanescent waves, super- 
resolution problems, etc, although this would be an attractive subject. The system 
theoretical approach will bring about duality, which links control and observation. We 
shall see that some results originally stated for a ‘direct’ or ‘control’ problem can be 
easily translated into the language of ‘estimation’ or ‘inverse’ problems. 

2. Distributed parameter system theory 

Here we are not going to deal in detail with the formal setting of systems having 
infinite-dimensional state space, which are governed by partial differential equations. 
The interested reader may refer to Curtain and Pritchard (1978), Goodson etul(l967) 
or to Helton (1976). Basic system theory will be introduced gradually in the following, 
by making reference to our physical example. We shall restrict ourselves to the case of 
scalar diffraction in the stationary regime. 

t On leave from Istituto di Cibernetica, Universith degli Studi, via Viotta, 5-1 20133 Milano, Italy. 
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646 G Crosta 

Let us consider an open connected bounded set R of the three-dimensional 
Euclidean space R 3 .  The position vector in fl is x. In R we define the complex scalar 
field w (  * ) with suppressed time dependence exp -jwt. If w is known wherever it is 
defined, the physical phenomenon of stationary scalar diffraction is completely 
described. Hence we call w the ‘system state’. 

Usually w is not given directly but as the solution of the ‘state equation’ (SE). Let the 
properties of the medium inside R be represented by a potential function V ( x ) ,  then the 
SE for the interior problem we are considering reads 

( A + k 2 ) w  = V (  * )W x E R c  R 3 .  12.11 

( A + k 2 n 2 ( x ) ) w  := K w  = 0. 

k is the complex wavenumber. Equation (2.1) can be recast into 

12.2) 

n (x) is the refractive index of the medium, which may take complex values. 
In order to specify the system completely, we must add adequate boundary 

conditions (BC) and something else. The general theory of partial differential equations 
(PDE) states that the solution w must be sought for in a suitable Hilbert space W, which 
we shall study presently. The state space of a system governed by a PDE, also named a 
‘distributed parameter system’ (DPS), is therefore infinite dimensional. 

3. The interior problem 

3.1. Problem statement and Sobolev space setting 

The geometry of R is shown in figure 1. The boundary of R, an, consists of 

aa:=rlur2 r ,n r2=0.  (3.1) 

V t  r 

Figure 1. Two-dimensional sketch of domain geometry for the interior problem. 

Both of the two-dimensional surfaces rl and T2 are closed sets, i.e. R is not simply 
connected. rl and T2 are regular surfaces, i.e. the position vector x on each of them is a 
continuously differentiable function of some parameters (see e.g. Ladyzhenskaia and 
Uraltseva 1968, p 6). 

The BC we shall study are 

w / r ,  = U E U wlr, = 0 (3.2) 

where U is a Hilbert space, the elements of which have rl as a support. 
The spaces of interest to us are Sobolev’s spaces Wm*2(D), D c R an open bounded 

set in R”, which are introduced e.g. in § 3, ch 1 of Lions’ (1971) textbook. Briefly stated 
W”.’(D), m 5 0 integer, is the Hilbert space of functions f € L 2 ( D ) ,  the partial 
derivatives of which up to the mth are in L2(D).  In particular L2(D)  = WoS2(D). 
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The inner product in Wm,2(D), is defined by introducing the multi-index 

q := (41, * - * ,q . )  (3.3) 

The partial derivatives off can be thus expressed by 

oqf:= aIq1hf/(ax:1 . . . a x $ )  

hence the inner product in WmS2 is defined by 

( g  I f )  wm.2 := c (D4g I D 9 f ) L 2 .  
IqlSm 

Example. Let m = 1, n = 3, Then 

(3.4) 

Sobolev spaces W”2(D) of arbitrary positive index s can also be defined by introducing 
the fractional derivative (Baiocchi and Capelo, 1978 p 113). Usually W”’(0 )  is 
denoted by H s ( D ) ,  which we shall do hereafter. 

3.2. Existence and uniqueness of a solution 

Given the topological relationship between R and r defined above, there exists a 
theorem relating Sobolev’s spaces of functions defined respectively on R and r. This is 
the ‘trace theorem’, a simplified form of which reads: givenfe Hm(R), m 5 1, integer, 
there exists a linear, continuous, surjective map 

yo  is a ‘trace operator’. Every BC f l r  is therefore the ‘trace’ on r of an element f. This 
applies to equation (3.2), where U is a proper subspace of H”-”’(r). In fact 

where the symbol = stands for ‘isomorphic to’. 
From a system theoretical veiwpoint it would be attractive to study how U affects the 

state w, i.e. to find which hypotheses are needed for (2.2) and (3.2) to introduce a well 
defined ‘input map’ B 

B :  U +  W 

U - W  
(3.10) 

from the input space U to the state space W. B makes sense if the ‘boundary control’ U 
uniquely determines the solution w ( x  ; U), x E R. As physical intuition suggests to us, 
this holds if 

-k2  & UL (3.11) 
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where cL is the spectrum of the operator L( . ) := A - V (  ). cL is found by solving 

L( * )w + k2w = 0 

wjan=O. 

Let L( * ) be written as in 8 3.4 of Ladyzhenskaia and Uraltseva (1968) 

L( * )=I a -(a,,-) a - V (  * ) 
1.1 ax, ax, 

(3.12) 

(3.13) 

where 6;; is Kronecker's symbol. Then L is strictly elliptic because there exist two 
positive constants m l  and m2 such that for all vectors y having real Cartesian 
components yi, i = 1 ,2 ,3 ,  

Moreover let the potential V (  . ) satisfy 

I lV(' )IlL2m)sm2. (3.15) 

Then we can apply to system (2.1), (3.2) Fredholm's theorem on elliptic PDE (Ladyz- 
henskaia and Uraltseva 1968, 8 3.5) dealing with existence, uniqueness and regularity 
of solutions and structure of crL. We have that the problem (2.2), (3.2), where U is in the 
sense of (3.8), (3.9) the trace of an element in H1(n), admits a unique solution 

W E  W = H ' ( n )  (3.16) 

throughout the complex k2 plane, except at a countable set of values k:, n = 1,2 ,  . . . . 
Hence crL is the countable set of eigenvalues. If -k2 in (2.1) is not an eigenvalue, then 
the map B of (3.10) is well defined. 

To complete the system theoretical picture we need to introduce an observation or 
'output'-map C. One interesting choice is 

C : W + Y  
(3.17) 

i.e. we observe the normal derivative on r2; Y is the outward normal unit vector. The 
regularity of Cw can be evaluated from that of w through the trace theorem, which 
applies also to the normal derivative (Baiocchi and Capelo 1978, appendix 4). We 
conclude that 

(3.18) 

provided a Sobolev's space with negative index is given a meaning. To this end let us 
introduce H-" ( T ) ,  m > 0, where T is the boundary of the open bounded set D c R ". 
Let g E H"(T) :  we construct the continuous functional (g I * ), This is an element of the 
space H-"( T ) ,  dual to H" ( T ) ,  where duality is represented by the ( ) relationship 
(Lions and Magenes 1972, ch 1, 9 7). Thus (3.18) makes sense. 
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3.3. The maps B, C and a simple inverse problem 

The map yo defined by (3.8) for an elliptic PDE is onto, but in geneal not invertible. In 
fact, Ker yo, i.e. the set of elements say U in H"(S2) which vanish on the boundary, is a 
subspace denoted by H ;  (a). u is the solution of 

(3.19) 

where A is an elliptic operator and f is a 'distributed control' or 'source' term. In our 
system, f = 0; moreover we have an eigenvalue problem; hence Ker yo consists of 
eigensolutions defined by (3.12). If we assume - k 2  & rL, then Ker yo  = {0}, a sufficient 
condition for the linear map y o  to be invertible. By (3.8), yo  is related to B-'. We 
restate (3.19) by 

f r,=B. (3.20) 

Hence the requirement on eigenvalues affects both maps. After defining B, we now 
invoke some results on elliptic operators (Ladyzhenskaia and Uraltseva 1968, ch 3,O 8), 
related to the second fundamental inequality, to state that Im B is a proper subspace of 
H " ( 0 ) .  As a consequence, not every element of H"(n)  can be obtained as a solution 
of a 'boundary control' system, such as (2.1) and (3.2). For a qualitative proof of this 
fact, let us compare U in (3.19) with w ,  the solution of (2.1), (3.2): there is no way of 
finding a sequence {w,} which converges towards U. The physical implication of this 
statement is well known in optics. Lohmann (1978) calls it 'the limit of three- 
dimensional display', i.e. the impossibility of achieving an arbitrary three-dimensional 
field amplitude distribution inside a volume by acting on the boundary alone. It is a 
typical feature of systems governed by PDE that solutions may span a proper closed 
subspace instead of the whole state space. In dynamical DPS, this originates the 
definitions of 'T-approximate controllability', when the range of the control map at time 
T is dense in some subspace, and of 'T-strict controllability', when the control map at 
time T is onto the state space (see e.g. Curtain and Pritchard 1978, Delfour and Mitter 
1972). Finally we stress that nothing similar occurs in systems governed by ordinary 
differential equations, because their state space is finite dimensional. 

The map C defined by (3.17) can be related to the trace operator y ' ,  which yields the 
normal derivative at the boundary. We have: 

(3.21) 

We are interested in C-', which makes sense if Ker C = (0). By taking (3.2) into 
account, we look for the solution w which vanishes on r2 together with its normal 
derivative. Zero Cauchy data on the boundary or part of it imply (see e.g. Miranda 
1970) that w vanishes everywhere in 0. Hence in our particular case C is invertible. 

After listing the properties of B and C, we can now define the composite linear map 

v q  . 
av rz 

By combining the statements discussed above we find that 

Ker M = (0). 

(3.22) 

(3.23) 
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From (3.23), normal derivative data on r2 together with the SE (2.1), BC (3.2) and 
condition (3.11) are necessary and sufficient for the boundary control U to be identified 
uniquely. This is a particular inverse diffraction problem in a bounded domain, which is 
shown to have unique solution. 

3.4. Extension to a general inverse problem in a bounded domain 

If we replace the homogeneous BC on r2 by 

Wlr2=hi  

we still have well defined maps 

B ~ :  H1/2(rl)-+H1(a) 
U - w  

provided (3.11) holds, and 

c1: H1(a)-,H-1’2 (rz) 
a w l  . 

(3.24) 

(3.25) 

(3.26) 

MI, defined by 

Mi := C1 * Bt (3.27) 

is a map from H1’2(I‘l) to H-1/2(I’z). It is not linear because u1  = w l r l  such that hz = 0, 
given hl#O,  is non-zero. M I  is invertible: given the non-zero Cauchy data on r2 
( h l ;  h2) the control u 1  at rl is uniquely identified. This can be proved per absurdum by 
assuming the existence of two distinct solutions wl,  wz, having rl traces respectively v i  
and u2. By solving the PDE system for w1 - wz we are led to a Cauchy problem with zero 
data on r2, which implies w1 = wz everywhere in a, hence v 1  = u2.  

M1  is an affine map, as can be proven by superposition. We shall write 

Im M1 = Ml(0) + Im M (3.28) 

where M is defined by (3.22) and we mean thereby that every element in the set Im M I  
is obtained by translating the corresponding element in Im M by the vector a w ( u l =  
O)/avlr2=Ml(0). The latter depends on h l .  

We have thus shown the uniqueness of solution of an inverse problem (identification 
of boundary condition) when arbitrary Cauchy data are given. 

3.5. ‘Generalised controllability’ and the adjoint system 

For reasons which will be found in the next sections we now give a density statement for 
the map M. In the proof the role of duality will be stressed. By somehow arbitrarily 
extending the nomenclature used in dynamical system theory, we define the PDE system 
(2.1), (3.2), (3.17), subject to (3.11) to be ‘rl-+rz approximately controllable’ in a 
generalised sense if 

m= h-”’(r2). (3.29) 

The physical meaning of (3.29) is that any element in H-1’z(I‘2) can be approximated as 
closely as we wish with respect to the topology of H-1’2( ), by adequately choosing the 
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boundary control U. The proof of (3.29) will now follow. We notice that the indexes of 
trace spaces appearing e.g. in (3.22) are fractional. This fact is among the hypotheses of 
the trace theorem mentioned above for Sobolev spaces. A property similar to (3.29) is 
stated and proved in Lions (1971, p 78): however, it involves Sobolev spaces with 
integer indexes. 

A density statement for a linear subspace S EH, i.e. 3 = H, holds if the only element 
h orthogonal to S is h = 0. In our case S = Im M; H = H-’/’(r2). To state ortho- 
gonality we do not use the inner product in HI”( * ), but we require the antilinear form 
defined below to vanish: 

(3.30) 

The subscripts remind us of the affiliations of the bra and the ket. As we shall see, (3.30) 
is a term appearing in Green’s formula, the arguments of which belong to the above 
defined ‘primal’ PDE system and to an auxiliary system the ‘adjoint’, which is linked to 
the primal by duality rules. The adjoint system reads 

The rules for writing (2.31) are 
(i) replace the state equation (2.1) with its adjoint; in general even if k2n(x)* is real, 

we do not know if K = K + ,  unless we prove the domains D ( K ) ,  D(K+) are equal; 
(ii) put a homogeneous Dirichlet BC where a control acted on the w-system; 
(iii) put a control h on rz where we observe w. Moreover, as we are going to prove a 

density statement, the control h must satisfy (3.30). Its regularity is also known. 
Fredholm’s theorem also applies to (3.3 l), to state existence, uniqueness, regularity 

of solution p (  - ) and structure of aL+. The results can be derived by analogy from those 
listed in 0 3.2. 

3.6. The Green formula for the w and the p systems 

We have arrived at the adjoint system by rules (i) to (iii), which are based on system 
theoretical duality between control and observation (Delfour and Mitter 1972, Dolecki 
and Russel 1977). If we have two sets of operands which are dual to each other, we can 
at least formally apply the second Green formula (where the overbar denotes the 
complex conjugate): 

(3.32) 

To stress the symmetry of the formula we shall introduce the following notation (Berzi 
1976) 

(3.33) 

in close analogy to what is done in quantum field theory. All hypotheses for its weak 
form, listed in appendix 4 of Baiocchi and Capelo (1978) are satisfied by the non-zero 
operands in the primal and dual systems. The formula is a functional relationship 
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between the state w of the controlled system and the state p of the observed one. p is a 
‘Green function’. Most readers may be familiar with the heuristic Green formula used 
in optics, where the Green function is the solution of a state equation having a ‘delta 
function’ source term and homogeneous BC. Actually the Green function, i.e. the dual 
system, is not assigned in a unique way: it depends on the task we want to solve. If we 
are interested in the field value at a point, then the appropriate source term is a delta 
function. If our task is an ‘approximate controllability’ proof, system (3.31) is needed. 
Later on we shall meet an optimal control problem: the dual state equation will have a 
distributed source term (see § 4). 

Back to equation (3.32), from equations (2.1), (3.2), (3.30), (3.31) the only term left 
reads 

(3.34) 

hence dp /dYl r l=  0, which together with plr,  = 0 forms a Cauchy problem for the system 
(3.31) we have already met. In particular, it follows that h = 0 is the only element 
orthogonal to Im C - B .  Therefore property (3.29) holds. 

3.7. Density statements and inverse diffraction 

Given a linear operator M mapping a linear topological space U into another linear 
topological space Y, such that m= Y, and given the operator M’ adjoint to M, 
which relates dual spaces, mapping Y‘ into U’, it can be proved that: 

m= Y B K e r  M* = {Oy,} (3.35) 

Ker M c  is the set of elements which are mapped into the null element of U’. Equation 
(3.25) is in many respects the relationship which originated research on system 
theoretical duality (Delfour and Mitter 1972, Dolecki and Russel 1977). If we identify 
U and Y respectively as the input and output spaces of the w (or primal) system and Y’, 
U’ as the input and output spaces of the p (or dual) system, then we can draw the 
following diagrams which synthesise some properties listed above: 

M 
U--+Y 

r2 
aw a v  I 

M* 
Y ’ 4 U ’  

We can relate the input to the output by ‘overriding’ the state space and write: 
- 
I m M =  Y. (3.36) 

Now we invoke (3.35) and conclude that in proving the ‘approximate rl + r2 control- 
lability’ for the primal system, we implicitly showed that the linear map M’ is 
one-to-one. The physical consequence is that given plr,  = 0, if we know ap/dvlrl,  we 
can reconstruct PJr, = h unambigouously: the inverse problem or TI -* r2 observation’ 
on the adjoint system has a unique solution. 

This density statement is an alternative proof of uniqueness for the primal system 
inverse problem, because results are invariant with respect to duality. The structure of 
the second Green formula itself reminds us of this fact: this is nothing but a consequence 
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of charge conservation by the scalar field (Roman 1968). With some additional 
calculations we can deal with arbitrary Dirichlet BC on rz for p :  we remind the reader 
that duality easily extends to affine systems (Delfour and Mitter 1972). 

Uniqueness holds for identification of boundary condition at rl, if geometry is 
known, eigenvalues are excluded and Cauchy data on r2 are available. If rl includes a 
measurable volume, we expect some sources to be located therein. The system studied 
here does not allow us to reconstruct that source distribution in a unique way. This is a 
well known result of inverse scattering theory, for which the reader is referrred to 
Arnett and Goedecke (1968), Bleistein and Cohen (1978). 

4. Optimal control problems 

4.1. A n  introductory example 

Before discussing how to solve a practical inverse diffraction problem, i.e. given some 
measured Cauchy data on an adequate support, find the input which orginated them, we 
sketch some basic features of optimal control theory for elliptic PDE, although in the 
simplified form which fits our needs. 

Let the DPS be described by 

(4.1) 

C y = y  i n n  

where A is an elliptic operator and y is a real valued function. We assume that 
existence, uniqueness and regularity of the solution y ( v )  in a real Sobolev space are 
guaranteed by some adequate hypotheses. The map C here denotes distributed 
observation all over a. 

Let the ‘cost functional’ be defined by 

where z d  is an arbitrary function defined in n. The ‘physical’ term P(u)  compares the 
solution y ( v )  to the desired output z d  by a quadratic criterion. The ‘economical’ term 
E(u) weights the cost of implementing the boundary control U, which must be chosen 
inside U a d ,  a subset of the input space U. 

A control U E U a d  is defined ‘optimal’ if it minimises J (  - ): 
J ( u ) =  inf J ( u ) .  

0 s  uad 
(4.3) 

The minimum of J (  * ) exists and is unique if (Lions 1971): 
(i) U a d ,  the admissible input set, is a closed subset of the Hilbert space U; 
(ii) U a d  is convex, i.e. 

Bul+ (1 - 8)uz E U a d ,  Ve, 0 s e s 1, vul ,  02 E U a d ;  (4.4) 
(iii) J (  * ) is a continuous functional of U,  satisfying 

lim J ( u ) = + o o ;  (4.5) Il+m 
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(iv) J (  ) is convex, i.e. 

 VU^, U ~ E  U a d ,  Vy, 0s c 1: J(Yu~ + (1 -Y)u~) yJ(ul)+(l - Y ) J ( u ~ ) .  (4.6) 

It can be shown that J as defined by (4.2) satisfies all of these hypotheses, hence it attains 
its infimum value at U. 

The optimal control problem we are interested in is stated by: (al)  the system (4.1) 
subject to (a2) condition (4.3). The latter can be converted into an inequality by 
invoking the general theory explained by Lions (1971, pp 9-17). 

Given the real valued functional (4.2) 

its Gateaux derivative (G-derivative) V J  is defined as (Baiocchi and Capelo 1978, pp 
38-52) the ‘bra’ vector such that 

J ( u  + h 6 ~ )  - J ( u )  
lim = ( V J ( U ) , S U )  A 3 0 ;  V SU E U a d  
A -0 A 

U L d  U a d  

(4.8) 

where U h d  is the dual of U a d  and 6u is a variation of v allowed by the constraints, if any. 
If U a d  = U, the problem is unconstrained. 

By theorem (1.2) of Lions (1971, p 9), the minimising element U of (4.3) is 
characterised by the ‘variational inequality’ 

(vJ(U), (U - U)) 5 0; vv E U a d  (4.9) 

where (U - U )  is the same as Su, or by 

(vJ(u), U - U)) 3 0; vu E U a d .  (4.10) 

We are interested in determining the G-derivative, or gradient, explicitly. To this 

The solution of (4.1) can also be defined through the second Green formula. If there 
end we need the Lagrangian approach. 

exists y E H”(R) such that 

(4.11) 

We say y is the ‘weak solution’ of (4.1). is the ‘co-normal’ derivative (Lions 1971, 
p 24), p plays the role of a Lagrangian multiplier. We denote the first and second 
integrals in (4.11) by F (p ;  y) and G(p;  U )  respectively. 

The ‘augmented cost functional’ or problem Lagrangian is defined by 

L(y; v) :=J(u)+F(p;  y)-G(p;  U )  (4.12) 

where, due to (4.1) and (4.11), 

(4.13) 

(4.14) 

The minimum of L, which is unique because hypotheses (i) to (iv) above can be 
proved to hold, is characterised by GL(y(u); U )  = 0. As it is customary in Lagrangian 
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theory, we take y and U as independent variables and write the first variation 

aL a~ 6L = -6y +-6v = 0 .  
a y  ao (4.15) 

We may well require 

v a y  E H"(R) (4.16) 
aL - - sy=o 
a y  

which explicitly means 

We are left with 

1, dr 60 + 2c(v 1 6 v ) ~  = 0 v 6v E ua*. (4.18) 

If U = H o ( r ) ,  then the wanted gradient reads 

(4.19) 

We still have to characterise p uniquely. (4.17) and (4.1 1) define it as the solution of the 
'adjoint system' 

(4.20) 

for which existence, uniqueness and regularity theorems also apply. 

we can use the following: 
Hence, instead of conditions (al ) ,  (a2) above, in order to find the optimal control U 

(bl) the primal system (4.1) 
(b2) the adjoint system (4.20) 
(b3) the variational inequality 

(ap(v)/avA + 2cu, v -U) 2 0 v U E Uad. (4.21) 

We notice that state equation (4.20) has the 'physical error' as a source term. This is 
related to the optimal control functional we must minimise. Finally, we stress that z d  

has not been specified further: it need not be the solution of a given PDE, i.e. an input 
U E Uad such that P ( u )  = 0 may not exist. This fact is acceptable because we are dealing 
with optimal control, not controllability. In inverse problems often z d  results from 
interpolated experimental data; they can be represented by the sum of a deterministic 
function which is the solution of a PDE, and a stochastic process completely unrelated to 
the mathematical model of the physical phenomenon. 

4.2. Cost functionals depending on complex variables 

We must extend the results of 0 4.1 to diffraction problems, where system states are 
complex quantities, i.e. scaiar field amplitudes w, p, etc. the cost functional we need and 
the corresponding 'extended' Lagrangian, denoted respectively by J", Le, must take on 
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real values, their physical meaning being related to energy. Sufficient conditions for this 
property to hold is that J", Le be bilinear forms in ( w  ; E), etc, and/or contain terms like 
ldI2. ( w  + E)  etc, d E C. In order to satisfy these conditions we may have to add some 
terms to the old J,  L. The extension problem is also met and solved in Lagrangian field 
theory (see e.g. Roman 1968, part l), where switching over from real to complex fields 
and possible addition of new terms in order to get say Le is equivalent to doubling the 
system's degrees of freedom. 

Let 
w = ( w ,  + iwi)/21'2 

E = ( w ,  - iWi)/2 (4.22) 1/2  

wn wi real. 

Of course Le(w ; E)  = Le(w,; w i ) .  We have a unitary transformation between fields, 
which enables us to perform calculations on Le(w,; w i ) ,  a real functional of real 
independent variables. Equivalently SL" is evaluated by varying w,  B independently. If 
we refer to the example in § 4.1, we now let the state equation (4.1) hold for w ;  the 
extension rule brings in also the conjugate state equation for B; the same holds for the 
dual system (4.20). Moreover 

and 

L'(w; E;  U ;  l j ) = J " ( w ;  E; U ;  B ) + F ( p ;  w ) + F ( F ;  E)-G(p; u ) - G ( a ;  0 )  (4.24) 

which must be compared with (4.12), (4.13) and (4.14) for notations. By extending 
(4.18) 

aL" aL' - sv +- slj = 0 
av at; 

we get the counterpart of (4.10) 

(VL"(O), v - U )  3 0 vu E Uad x Uad 

where 

(4.25) 

(4.26) 

,Le=[-] , - U = [ -  U - U  -1 
U - U  

(4.27) 

(4.26) makes sense because in this case it relates to the real valued first variation of 
(4.24). 

As we have seen the meaning of Lagrangians depending on complex field variables, 
we may apply these concepts to the density statement of 99 3.5-3.7. The second Green 
formula (9 3.6) then becomes part of a suitably defined problem Lagrangian. We do not 
go into further details, however. We just notice that a density statement can also be 
proved by a variational approach: a Lagrangian is written, its first variation evaluated 
and some terms thereof set in a seemingly arbitrary way equal to zero. The adjoint 
system is thus arrived at. Equivalently in 8 3.5 we stated the duality rules in a seemingly 
arbitrary way in order to write the adjoint system just at the beginning of the proof. This 
remark should make the connection between the Green formula and the Lagrangian 
more clear, thus supporting the statement on charge conservation at the end of 9 3.7. 
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4.3. The regularisation of the inverse diffraction interior problem 

The Cauchy problem for an elliptic PDE is ill posed in the Hadamard sense (Miranda 
1970, Ladyzhenskaia and Uraltseva 1968). The solution is unique but does not depend 
continuously on data. This lack of regularity becomes relevant when data are affected 
by measurement errors. To overcome ill posedness a regularisation procedure is used, 
which is borne by duality between control and estimation. The particular scheme we 
shall describe is suggested by a work by Bensoussan (1967), also described in Lions 
(1971, p 216ff), aiming at estimating the initial condition of a parabolic PDE. 

Given the primal state equation (2.2) and given the measured data 

(the roles of rl and r2 in figure 1 can be interchanged), we must reformulate the system 
in order to combine the suggestions listed in 00 4.1 and 4.2. 

Let 

(4.28) 

both are subject to condition (3.11). 
U is the boundary value to be identified. The w1 system is of Dirichlet type; the w~ 

system is a mixed boundary value (BV) problem. As rl and r2 are closed and disjoint, 
both problems can be easily shown to admit unique solutions w l ,  w z  (Miranda 1970, 
Ladyzhenskaia and Uraltseva 1968); their regularity is linked to that of data as 
discussed in 0 3.2. 

Let us think of the direct problem for, say, the w1 system. Given ( U ;  h l )  we get 
w l ;  h2 is then the normal derivative of w1 at r2. If we take exactly ( U :  h2) as a data for a 
mixed BV problem, we again find wl, hence w1= w2 i.e. in R. 

( h l ;  h2) as experimentally determined, are affected by noise, hence the values we 
assign to h2 are no longer related to w1 in a deterministic way. Yet it makes sense to 
equate h2 to a normal derivative and therefore to write the w2 system. These remarks 
help in relating the direct (control) to the inverse (identification of U )  task. We shall 
write a physical term in the cost functional, which compares w l ( v )  with w2(u): 

(4.29) 

If J " ( . )  for this problem consisted of P ( . )  alone, J" would not be stablet, a fact 
stemming from original ill posedness. In order to warrant existence uniqueness and 
stability of the minimising element we introduce 

E"(v)  := &IlUll'U & > O  (4.30) 

and set 

J . ( * )  := P"( * )  +E"( a ) .  (4.31) 

t i.e. its minimising element would not continuously depend on data (hg; h2). 
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The inverse problem consists of finding U ,  such that 

J e ( u , ) =  inf JE(v ) .  (4.32) 
U E Uad 

The regularity of the BC to be identified must be known a priori. For simplicity we set 

(4.33) 

If the counterpart of conditions (i) to (iv) in § 4.1 hold for J, then U, is unique. 
Moreover 

uad = U = Ho(rl). 

lim U, = U  ̂ 14.34) 
E + O  

where U* is such that P'(2) = 0. The method presented here is also known as Tichonov's 
regularisation (Tichonov and Arsenin 1976). We want to characterise U, by the 
counterpart of conditions (b l )  to (b3) in § 4.1. As a first step we define the conjugate 
primal system pair, having solution [Gl(fi); G2( f i ) ] ;  wl, w 2 ,  Gl ,  Gz satisfy a suitable 
second Green formula analogous to (4.11), the only difference being caused by the 
mixed BV problem. We note in passing that normal and co-normal derivatives for the 
Laplacian coincide. By a procedure, which mostly duplicates the one given, described 
in 94 .1  and which is lengthened by the use of conjugate states, we arrive at the 
optimality set consisting of: 

(cl) the primal system pair (4.28) and its conjugate 
(c2) the adjoint system pair 

(4.35) 

and its conjugate; 
(c3) the variational inequality 

v ~ ~ ) E H O ( ~ ~ ) X H ~ ( ~ ~ )  (4.36) 

which explicitly contains the regularising parameter E .  The practical relevance of (4.36) 
will be discussed further in the next section. 

4.4. The structure of a data inversion algorithm 

In § 4.3 we have related near field reconstruction to minimisation of a functional. This 
connection which is brought about by the variational approach to solutions of PDE, also 
play a basic role in suggesting how an algorithm should be designed. For an extensive 
treatment of the theoretical approach and its practical consequences in parameter 
identification, we refer the reader to Chavent's (1971,1977) fundamental work and to 
the literature mentioned therein. 

The inequality (4.26) must be inserted into the iterative algorithm, sketched by the 
flow chart of figure 2, where vo, the initial estimate of U is somewhat arbitrary. 
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Solve the primal systems 
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4 

Solve the adjoint systems 

1 - 
Evaluate the  cost 

Yes I I 

'k .1  

Update 
'k 

E v a l u a t e  g r a d  I ( - 1  Q 
End 

Figure 2. Simplified flow chart for the data inversion algorithm. 

Primal and adjoint systems are solved by some standard techniques. 
The cost functional and its gradient are evaluated. Then we need an updating law to 

relate the gradient at the kth iteration to the (k + 1)th estimate of U. This law is the basic 
feature of steepest descent algorithms (see e.g. Chavent 1977). The target is to minise 
llVJell; the inequality 

Jkk+"' cJkk'  (4.37) 

must also hold for any result to make sense. The stopping test is given by: 

IIV J* I I  c P p > 0, given. (4.38) 

The gradient is yielded by (4.36) 

5. Conclusion 

We have tried to show how some system theoretical concepts such as duality, control- 
lability, observability, optimal control can be relevant in the theory of inverse 
diffraction and lead to the design of a functional minimisation algorithm. 
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